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Summary. The error in the energy of the traditional coupled-cluster (TCC) 
approach and of several variants is analyzed in terms of the error 6 of the cluster 
operator S. A key feature of this analysis is that TCC can be based on an energy 
functional (asymmetric in S and S*) that is made stationary with respect to 
variation of S t. The error of TCC scales with the particle number n, but it is not 
quadratic in 6. An improved coupled-cluster method (ICC) is presented that is 
the next step in a hierarchy from TCC to an exact variational theory. An 
alternative hierarchy is possible that leads to the extended c0upled-cluster (ECC) 
method of Arponen. Variational (VCC) and unitary (UCC) coupled cluster 
theories and their stationary conditions and errors are analyzed along similar 
lines and practicable VCC or UCC approaches are presented. An infinite 
summation of certain terms in the VCC expectation value is shown to lead to a 
coupled-pair functional of the type proposed by Ahlrichs. The various CC 
schemes discussed here are compared on the CC-D, CC-SD and CC-SDT levels 
and beyond this. Special aspects referring to properties are also discussed. 

Key words: Cot~pled-cluster (CC) theory-Variational CC-Unitary C C -  
Coupled-pair functional (CPF) - Quadratic CI (QCI) 

1. Introduction 

Coupled-cluster (CC) theory is an established method for the calculation of 
correlation effects in nuclear [1] atomic [2, 3] and molecular theory [2, 4-8]. For 
recent reviews see [9]; as to the closely related coupled electron pair approxima- 
tion (CEPA) methods see [10]. CC theory is based on the concept that the wave 
operator which transforms an independent-particle reference wave function q~ to 
the exact wave function ~u must be multiplicatively separable [ 10c, 11] and hence 
is conveniently written in the exponential form [1, 2, 12] 

~u = exp(S)~, ( ~ l ~ )  = 1 (1.1) 

with S an additively separable operator. This ansatz guarantees that the wave 
function of a system of non-interacting subsystems is the product of the wave 
functions of these subsystems and that the energy is the sum of the subsystem 
energies. In a diagrammatic representation of the wave function or the energy no 
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unlinked diagrams (in the sense of Goldstone [13]) arise. Additively separable 
quantities like the energy consist of connected diagrams only. It is tacitly 
assumed that the reference wave function • is separable. A closed-shell Slater 
determinant is for example separable into electron pairs. In this paper we shall 
always make this choice. 

Much less attention has been paid to the way 'an approximate solution of the 
Schr6dinger equation in the form (1.1) is constructed than to the form of the 
wave function itself. Minimization of the energy expectation value for the ansatz 
(1.1) leads to equations that are too complicated. Instead, traditional coupled- 
cluster theory (henceforth abbreviated as TCC) is characterized by an approach 
based on the method of moments (or of projected Schr6dinger equations). One 
chooses a set of excitation operators Xk, into which one expands S 

S = ~ c k X ~ ,  <~lXk[~> = 0  (1.2) 
k 

and one then forms the scalar products of the Schr6dinger equation H~P = E7 j 
with ~ in the form (1.1) from the left by (~1 and the (~X~* I. From the first 
scalar product one gets the energy expression 

E -- IHe l (1.3a) 

while the other scalar products are used as conditions for determining the 
coefficients Ck 

IX*k(H - E)eS l  • > -- 0 (1.3b) 

Alternatively one first multiplies the Schr6dinger equation from the left by e - s  
before one projects. Instead of (1.3) one then gets 

E = (fb [e-SHeS I • ) (1.4a) 

<~ IX2e-SneSl • ) = 0 (1.4b) 

These expressions make the connectedness obvious, but they are essentially 
equivalent to (1.3). In fact (1.3a) and (1.4a) are identical because the action of 
S on • to the left vanishes. In (1.4b) we note that the action of e -s  on the • at 
the left can only consist in reducing the excitation rank of X~k. So the set of 
operators X~ truncated at some particle rank together with the identity have the 
same effect to the left as the set Xtke -s .  

There are as many (nop-linear) equations (1.3) or (1.4) as there are unknowns 
c k and in cases of practical interest one usually gets a consistent set of solutions. 
The conditions under which solutions of (1.3b) or (1.4b) exist have, to the author's 
knowledge, never been studied. For the linearized LCC or CEPA-0 system (see 
Sect. 3) it is necessary and sufficient that the are linearly independent. 

If  the ansatz (1.1, 2) is exact, i.e. if there is an S of the form (1.2) such that 
for a given 

(H  -- E ) e S ~  = 0 (1.5) 

then (1.3) or (1.4) are necessary conditions for (1.5) to hold. However (1.5) will 
almost never hold exactly. Generally we will study a Hamiltonian expanded in a 
finite one-electron basis and the eigenfunctions of this algebraic Hamiltonian are 
obtained by the 'full-CI' approach. The full-CI wave functions will be exactly of 
the form (1.1) only if the operator basis is complete in the chosen one-electron 
space, i.e. if it contains all excitations within this space up to n-particle 
excitations for an n-particle system. 
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The motivation for the CC ansatz is in fact to get decent approximations to 
full C1 even in a truncated operator basis {X~}, e.g. for only two-particle 
excitation operators. With a truncated ansatz for S (1.5) cannot be satisfied 
exactly and necessary conditions for an unrealistic assumption to hold may be 
rather meaningless. 

One can, of course, justify the method based on (1.3) or (1.4) for a truncated 
ansatz by various arguments. One of them is that a truncated ansatz may be 
exact in special cases. For example, it is sufficient to limit S to one- and 
two-particle excitation operators for a supersystem of non-interacting pairs. One 
can argue further that Eq. (1.3) or (1.4) implies a nonunitary similarity transfor- 
mation of the exact Hamiltonian to a model Hamiltonian [14] (for the model 
space consisting only of 4) and that many-body perturbation theory can be 
derived from (1.3) or (1.4) [14]. The argument that a method based on a 
truncated Sk is a member of a hierarchy of methods that become exact in the 
limit k ~ n is less convincing, since this also applies to truncated CI. On the other 
hand there is sufficient numerical evidence [5-8] that the hierarchy of truncated 
CC converges faster to full CI than does the corresponding truncated CI 
hierarchy. 

Here we shall study the traditional CC method based on (1.3) or (1.4) in 
terms of an error analysis (concentrating on the relation between the errors of 
the wave function and the energy) and compare this method with possible 
alternatives. 

A standard argument against traditional CC theory has been that it is not 
variational, i.e. it does not furnish an upper bound to the exact energy. This is 
correct, but it is usually refuted by the argument that separability (extensitivity) 
is more important than an upper-bound property. To get an upper bound and 
separability simultaneously for a truncated ansatz that is not exact appears to be 
at least very hard, if not impossible. 

Of course, the importance of the variation principle has often been exagger- 
ated. However, one should not forget that the variation principle has two 
implications, one is the upper-bound property, the other is the fact the error of 
the energy is quadratic in the error of the wave function. This latter property is 
the more important one and it is worthwhile investigating how the error of a 
TCC calculation depevds on the error of the wave function and whether it is 
possible to achieve an error in the energy that is quadratic in the error of the 
wave function. Since one of the main aims of CC theory is to guarantee 
separability and hence extensivity, one should also ask how the error of the 
energy scales with the number of particles. It is desirable that it scales linearly. 
This is guaranteed if the approximate energy expression is separable i.e. consists 
of connected diagrams only. 

The present purely formal analysis is complementary to various numerical 
studies [5, 8, 15, 16] in which several variants of CC were compared with full CI 
[17] results, and also to previous analyses in terms of perturbation theory [5, 7]. 
Since it is uncertain Whether perturbation theory converges at all, arguments 
based on perturbation theory may not be too relevant. One of the main merits 
of CC theory is obviously that it is non-perturbative. Therefore it is recom- 
mended to analyze it as well in a non-perturbative way, at least to the extent to 
which this is possible. An interesting alternative to perturbation theory, much 
more in the spirit of the coupled-cluster approach, is a Newton-Raphson-type 
iterative procedure which, starting from a reference function 4, eventually leads 
to the exact wave function ~u [ 18]. 



352 W. Kutzelnigg 

What we call traditional CC (TCC) has also been referred to as 'standard 
CC' [5] (however, we want to use the  acronym SCC for simplified CC) or 
'normal CC' (this name may, however, create undesired associations to the 
'normal order CC theory' for open-shell states [3a]); the author's first suggestion 
CCC (for conventional CC) has not been accepted by the audience of the 
coupled-cluster workshop. 

2. Error of the wave function 

Before we study the error of the energy we must find out how the error of the 
wave function scales with the number of particle's. Let us first take a wave 
function that is multiplicatively separable (i~e. for a supersystem of non-interact- 
ing subsystems). Let 71 be the exact and 7" be the approximate wave function 
and let s and t denote subsets of the particles. 

t/, = qSl (s)~2(O (2. la) 

77 --- ~, (S)~z(t) (2. lb) 

A measure A of the error of an approximate wave function 77 is its distance in 
Hilbert space to the exact wave function 7'. For (2.1), taking all individual wave 
functions qq, ~2, ~1, ~2, 7/, and 7 7 real and normalized to unity we get 

A2 . . . .  117" 77112=2{ 1 (7"177>} A , + A z - -  5 - 2  2 A2A2 (2.2) 

The square of the error is hence dominated by a term linear in the number of 
subsystems: A scales essentially with x/n. A measure of the error that scales 
exactly with the number of particles in the case of separability for a multiplica- 
tively separable approximative real wave function is the logarithm of the real 
part of the overlap integral. In our example 

In(7" 177) = ln@, 1~, 5 + ln( .~2 l ff2 5 (2.3) 
1 2 In the limit of A ~ 0  the error measure (2.3) is equal to 5A . 

If  the approximate wave function is not strictly separable, e.g. is of CI type, 
one still gets that A 2 is dominated by a term linear" in n, but of course a relation 
of the type (2.3) will no longer hold. Take for example (for $1 and $2 acting on 
different subsystems) 

7" = (1 +-S~ + $2)~; 77 = (1 +S~ + $2)~ (2.4) 

117" - 77112= N( Sl - ~ 1  + s 2 - s 2 ) ~ N  2~-- I I (S l -  Sl)~ll  2 -~-11(82 - &)~ l l  2 (2.5) 

In the following sections it is convenient not to require that 77 is normalized to 
unity, but to assume that 77 is normalized such that the error of 77 is orthogonal 
to gs 

6 = 7 7 - 7 " ;  ( 6 [ 7 " ) = 0  (2.6) 

The relation to the A 2 defined by (2.2) for normalized 77 is then 

A2= ][6H 2 + 0(11611 4) (2.7) 

Hence 116 11 2 is a measure of the error of the wave function and is dominated by 
a term linear in the particle number. 
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3. Asymmetric expectation values for separable and non-separable wave functions 

We shall have to consider energy expressions of the type 

< ~[..t 1 ] i//2 > (3.1) 

where ~,  and ~2 are two different approximations to the exact wave function ~. 
Let us define the respective errors as in (2.6) 

6k = '/'k - ~/'; <6~ I~/'> =0 ,  <7' 1'/'> = 1 (3.2) 

Noting that H ~  = ET' one sees easily that 

R -  E = <6, I n -E[62> = 0(61). 0(62) (3.3) 

i.e. that the error of  the asymmetric expectation value (3.1) is bilinear in the 
relative errors of ku, and of  ~2. In the case that ~l -- 7'2 and that E is the 
ground state energy of H, the error (3.3) is positive, i.e. E is an upper bound to 
E. When writing 0(8) or O(S n) we mean orders of the norm [18 ]l of  8 or o(llsJI o) 
respectively. 

Since expectation value energy expressions (3.1) have an error bilinear in the 
relative errors of  the wave functions, and the relative error of the wave function 
is dominated by a term ~x /~ ,  we conclude that the error (3.3) is dominated by 
a term O(n). This is, of  course, not unexpected. What one should like is that the 
error for a separable system is strictly linear in n, i.e. that there are no terms 
O(r/2) etc. This is achieved if one takes care that both ~-/1 and 7' 2 are separable. 
Take again a supersystem of two non-interacting subsystems 

E - <~la~lblHa +Hbl~k2~O2b> = <~lalHa[~12a> + <~llblHbl~2b> (3.4a) 

<~11a~Ib[~2a~2b> <~]aJ~2a> <~/Ib l I//2b > 

- <8,b [ &  - & 182~ > /~ - E = (8,a [Ha Ea [82~ > + (3.4b) 
<l]/la [~/2a > <~//,b ]l~2b > 

The expectation value of a coupled-cluster wave function is 

E = <el, [eStHeS[4~> 
< ~ [eS, eS[ ~ ) (3.5) 

For  a separable system we have S = S~ + S b and we get 

<~ [eZ + S~(H a q- Hb)eso +sh[ ~)> 
E= <tI, _s* + s*._s~ 

<4~[eS~H~eS.]4 ~ ) <4~[eS~Hbe&[4~) 
- <45[eS~eSo[4~> + (4~leS~eSh[45> (3.6) 

and a similar expression for the approximative energy R in terms of the 
approximate ~a and ~b. 

We shall henceforth use the symbol 8 for the error of  the wave operator S 

8 = g -- S (3.7) 

The error of  the coupled-cluster expectation value (3.6) is of  O(8 2) and for a 
separable system it scales strictly linearly with the particle number n 

/~ -- E = 0(8 2) (3.8) 
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To study the error of the energy of a (truncated) CI calculation we write the CI 
wave function ~' in the form 

= (1  + U)~; U = ~ d k X k  (3.9) 
k 

If S in the sense of (1.1, 2) and U in the sense of (3.9) are expanded in the same 
basis {Xk }, the energy expectation values (3.5) and 

E - (~[(1 + U*)H(1 + U)[cb) (3.10) 
(~1(1 + U+)(1 + U ) I~ )  

will, of  course, differ and so will the Ck from the dk; however the error of the 
energy in both cases is quadratic in the error of  S or U respectively. We shall use 
the symbol 0 for the error of  U. Hence for (3.10) we get 

E - / ~  = 0(0 2) (3.11) 

The main difference between the errors 3 (of  S) and 0 (of  U) is that 3 is the error 
of the actual S with respect to the exact S, both of which are connected, while 
the actual U and the exact U, which differ by 0, contain disconnected terms as 
well. If  we evaluate the expectation value (3.10) with U replaced by the S which 
minimizes (3.5), this U = S will have a slightly larger error 0 than the optimum 
U (in the same operator basis), but (3.11) will still hold. Now the error of S = U 
as compared with the exact U = exp(S) - 1 consists of two parts, namely 3, the 
error of S, and 1S2 + -  • •, the error of  the exact 1 + S with respect to the exact 
exp(S). In this sense the CI error can be rewritten as 

E - / ~  = [0(3) + O($2)12 (3.12) 

It should be noted that since this error estimate is not based on the optimum 
choice for U, it may be too pessimistic. If  the operator basis contains up to 
quadruple excitations one will not identify U with S~ + $ 2 +  $3 + $4 (subscripts 
indicate the excitation rank), but rather include S 2, S 2, S~ $2, $1 $3 of which S 2 
is the most important. Then (3.12) holds with S 2 replaced by S 3. 

Let us now look at the energy expression (1.3a) of TCC theory. This is an 
asymmetric expectation value of the type (3.1) (note that (q~ leSl • > = 1) and the 
error is of the form (3.3). Obviously the error of # is dominated by S #  and that 
of eS# by 3#, so that the error is 

P - E = 0(S)0(3)  (3.13) 

This is a very poor error estimate, since it is only linear in the error of the wave 
function (unlike the CC expectation value, where it is quadratic). The fact that 
the error scales with the number of  particles is only a minor consolation. In fact, 
if the error estimate (3.13) were the last word for CC theory, this would not even 
be competitive with CI. We shall see that we get a better error estimate if we also 
account for the condition (1.3b) used for the construction of  S. More precisely, 
in Sect. 4 we shall reformulate (1.3b) as a stationarity condition and we shall 
consider alternative stationarity conditions as well; the error is sensitive to the 
kind of stationarity condition that one chooses. 

The CI energy (3.10) can be rewritten as 

E=(4,1HI~)+2Re(#IHUI~)+<~IU*(H--E)UI4,) (3.14) 
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and this may, for example, be evaluated iteratively. By the simple change from 
E to Eo on the right hand side, and writing S for U 

/~ = ( 4  IHI4 ) + 2Re(~IHS[4)  + ( 4  [S*(H - Eo)SI ~) ;  Eo = ( ~ I H [ ~ )  

(3.15) 

we get an energy that is no longer an upper bound to the lowest eigenvalue of 
the Hamiltonian, but which is separable (at least for S = $2), i.e. which scales 
linearly with the number of particles. This is seen if one rewrites the CEPA-0 
functional (3.15) in Lie-algebraic form as 

E = ( ~ [ H + [ H , S - S * ] + I [ [ H , S - S * ] , S - S * ] I ~ ) ;  S = $ 2  (3.16) 

Hence the error is also separable and it scales with n. We get 

ff~ - E = 0(62) + O(S 3) (3.17) 

The second term in (3.17) represents the difference between (3.15) and a 
coupled-cluster expectation value, while the first term in (3.17) is the error of the 
expectation value due to the error of S. 

Stationarity of (3.15) with respect to variation of S and S t leads to an 
approximation that has been derived in many different ways and has been given 
various names. It is the linear version of coupled-cluster theory, hence LCC [5] 
formerly called LCPMET [2] or CPA0 [20]. It is the first non-trivial step in 
unitary coupled-cluster theory [10c], and can be defined as the optimum lowest 
order perturbation theory [21] or as perturbation theory with partial summation 
of certain diagrams to infinite order: DMBPT(oo) [22]. A rather popular name 
is CEPA-0 [10d, 15] to indicate that it is the simplest of all CEPA variants [ 10]. 
The switch from (3.14) to (3.15) chosen here as derivation of CEPA-0 has some 
similarities with the change from Brillouin-Wigner (BW) to Rayleigh- 
Schr6dinger (RS) perturbation theory. Note that RS scales with n, while BW 
does not, and that in some special cases BW may provide an upper bound, which 
RS never does. 

4. The method of projected Schriidinger equations 
and the related stationary conditions 

To appreciate the meaning of the method of projected Schr6dinger equations, on 
which traditional CC theory is based, it is useful to derive the CI method in an 
analogous way where this derivation turns out equivalent to that from the 
variation principle. Let us start from the Schr6dinger equation in the form (see 
the comments prior to Eq. (3.10)) 

n(1 + V)4 =E(1  + 0)4 ;  U = ~ d k X  k (4.1) 
k 

(i.e. for a truncated U -  again from an incorrect assumption) from which by 
analogy with (1.3) one gets the energy expression 

E = ( 4  IH(1 + U)I4 ) (4.2) 

and the conditions 

(4IX~(H - E ) ( i  + U) I4)  = 0 (4.3) 
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The a posteriori justification of this procedure is now obvious. One multiplies 
(4.3) by d* and sums over k with the result 

<~IUt(H -E) (1  + U)I~ > = 0 (4.4) 

Adding this to (4.2) gives (3.14) and hence (3.10), i.e. the energy obtained by the 
method of projected Schr6dinger equations is an expectation value and the 
'projected Schr6dinger equations' (4.3) are conditions for/~ as given by (3.10) to 
be stationary with respect to variation of U t. 

What do we get by the same argument from (1.3b)? Multiplication of X~ in 
(1.3b) by the amplitudes c* (1.2) and summation over k yields tile counterpart 
of (4.4) 

<~ ISt(H - E)eSl • > = 0 (4.5) 

and analogously to (3.10) we get 

/~ = <~ I(1 + S*)HeSl~> 
<4 I(1 + St)eSlfb> (4.6) 

This is precisely the energy expression that we make stationary in traditional CC 
theory, namely with respect to variation of S t . 

Equation (4.6) is a typical asymmetric expectation value - on the left side it 
looks like CI, while on the right side like coupled-cluster. The error estimate 
(3.3) involves the error on the left side and that on the right side. The latter is 
dominated by 6, i.e. the error of S, just as for a coupled-cluster expectation value 
(3.5). The former consists of two parts, the error 6 of S and the truncation error 
O($2). We hence obtain 

/~ - E = [O(b)  + 0($2)]0(6) ( 4 . 7 )  

The same reservation as with respect to the CI error (3.12) must also be made 
here. In fact (4.6) remains valid if we replace S t by U t, i.e. the operator for CI 
in the same basis. This means the error estimate (4.7) may again be too 
pessimistic. A closer estimate would be 

- E = O(0)O(~) (4.8) 

i.e. the error of the energy is bilinear in the respective errors of a CC and a CI 
wave function in the same operator basis. 

To make it clear that the S t in (4.5) and (4.6) should not necessarily be 
identified with the hermitean conjugate of S on the right hand side, but rather 
with the operator U t of the CI approach, it is better to replace S t in (4.5) and 
(4.6) by U t. While stationarity with respect to variation of U t leads to conditions 
on S, stationary with respect to variation of S, leads to conditions on U t, to the 
extent that (1 ÷ U*)~ will essentially become a CI wave function. We have not 
considered this variation, since U t is not needed for the evaluation of the energy 
from (1.3a). 

We can now compare the energy errors in the expectation value for CC (3.8), 
CI (3.11) or (3.12), and traditional CC theory (4.7) or (4.8). TCC appears to lie 
between expectation value CC and CI. The following observation is noteworthy. 
If  6 = 0, i.e. if eS~ is exact (e.g. for the case of a supersystem of non-interacting 
two-electron systems with S including S~ and truncated at the two-electron 
excitation rank $2) then both (3.8) and (4.8) vanish, while (3.11) or (3.12) do 
not. For this special case traditional CC is as good as expectation value CC. 
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The question arises how the error (4.8) scales with the number of particles for 
a separable system. From the asymmetric expectation value (4.6) it is not obvious 
that the error should scale strictly with the particle number. Fortunately an 
alternative formulation of (4.6) is possible. Noting that the conditions (1.4) are 
equivalent to (1.3), we get from (1.4b) the counterpart (4.9) of (4.5). Writing U* 
instead of  S* (see the comments between Eqs. (4.7) and (4.8) and after (4.8)) 

(~[Ute-SneS I a~)  = 0 (4.9) 

and instead of the energy expression (4.6) which is stationary with respect to 
variation of S t we now have 

J~ = (~l(1 + Ut)e-SHeS[~) (4.10) 

which must be equivalent to (4.6). This is also an asymmetric expectation value 
with 

(~ul[ = (~1(1 + Ut)e-S; [g*2) =eS] ~ )  (4.11) 

and the error estimate (4.8) is reproduced. However, (4.10) contains only connected 
diagrams and the extensivity of this energy expression and hence also of its error 
is guaranteed. This is in agreement with what is usually claimed for TCC. The 
functional (4.10) has previously been studied by Arponen [ 19a], who has derived 
TCC theory from the condition that this functional should be stationary. 

The error of the TCC energy is 'almost quadratic' in the error 6 of the wave 
operator, if the CC and CI wave functions don't  differ much, i.e. for []S[] 
sufficiently small such that exp(S) -- 1 + U ~ 1 + S, e.g. for the situation of typical 
dynamic correlation. Deviations from a 6 2 dependence of E - E towards a linear 
6 dependence become stronger the larger t[S[[ is, especially in cases of near 
degeneracy. 

5. Improved coupled-cluster theory 

In situations where the error E - E of TCC is closer to linear than quadratic in 
6 (see the end of the last section), TCC is not as accurate for a given effort as 
one might wish. possible improvements are rather obvious from the analysis given 
so far. Let us replace Eqs. (1.3b) and (4.6) characteristic of traditional coupled- 
cluster theory by 

( ~  [X-~(1 + S*)(H - E)eS[~) = 0 (5.1a) 

j~ _ ( ~  1(1 + S t + 1S*2)HeS[ ~ ) 
<~01(1 + S* + ½S*2)eS[~) (5.1b) 

i.e. make (5.1b) rather than (4.6) stationary with respect to variation of S*. 
One might use a different letter for S t, say St,  to indicate that Z* is not 

necessarily equal to the hermitean conjugate of S. However we shall here make 
the restriction S = 2;. This makes it clear that in (5.1b) we use a truncated 
expansion of exp S* on the left hand side. This also tells us how to choose the 
S* that (unlike in TCC theory) is needed to evaluate the energy. Otherwise one 
needs to formulate independent stationarity conditions for Z* based on the 
variation of S, which would make things rather complicated. 

The error estimate (4.7) is now replaced by 

-- E = 0(6). [0(6) + O($3)] (5.2) 
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Inserting the stationarity condition (5. l a) into the energy expression (5. l b) leads 
to a simplified stationary energy expansion as the counterpart of (1.3a) 

/~ = ( ~  I(1 + ½S*)HeS] ~7 (5.3) 
( ~  1(1 + ½St)eSleb) 

Generalizations with S t truncated at higher powers of S t are straightforward 
and obvious: correspondingly, the power of S t in (5.3) and of S in (5.2) is 
increased. In this way we can generate a hierarchy of approximations that start 
w i~  traditional CC and reach variational CC in the limit of no truncation on the 
left side. We call the scheme characterized by (5.1-3) ICC(2) to indicate that the 
highest power of S* on the left side is S'2; in this notation TCC is identical with 
ICC(1). The next member in the ICC hierarchy is, of course, ICC(3), for which 
the error formula is 

/~ - E  = O((~). [0(6)  -~- O($4)] (5.4) 

These 'improved' coupled-cluster ansatz share some important aspects with the 
traditional one: 

(a) if eS¢ is exact, the error vanishes, 

(b) although eS¢ on the right hand side is formally written untruncated, the 
expansion in powers of S will end at a finite order as long as the left side is 
truncated, 

(c) the energy expressions to be made stationary are asymmetric and one is 
concerned about stationarity only with respect to S t, not also S, as one would 
in a genuinely variational approach. 

Unlike for TCC, we have now no guarantee that the error scales with n. In 
the case of TCC the separability of the  energy (and hence connectedness) was 
established via the equivalence of (4.6) with (4.10). The generalization of (4.10) 
in the spirit of ICC would be 

( ~  IX~(1 + St)e-SaeSlq ~ ) = 0 (5.5a) 

/~ = <~ 1(1 + S t + ½St2)e-SaeS[ ~ ) (5.5b) 

However (5.5) is not equivalent to (5.1) since the set of bras ( ~  [X~( 1 + S t) is no 
longer equivalent to the set (~]X~(1 +St)e -s. One sees especially that the 
generalization of the energy expressions (5.5b) to infinite order 

= ( ~  [este-SHeSl~ ) = (~  ]este -SHe Se-St] eb ) (5.6) 

is not an expectation value, at variance with the generalization of (5.1b) to 
infinite order. 

Nevertheless, we may regard (5.5) as a member of another hierarchy of 
approximations, that eventually lead to the system 

(eb ]X~e~*e-SHeS[ ~/i) = 0 (5.7a) 

P = (cl)[eZ*e-SHeS[ ~ )  (5.7b) 

Equations (5.7) are just the defining equations of the 'extended coupled cluster' 
method (ECC) of Arponen et al. [19] and (5.7a) is the condition for stationary 
with respect to variation of S t. The corresponding condition for stationarity 
with respect to variation of S (that also should be satisfied) is 

( ~ ]eS* e-S[H, Xk]eS[¢ ) = 0 (5.7c) 
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Of course (5.5) can be regarded as an approximation to (5.7) and be called 
ECC(2), with ECC(1) identical with TCC. 

One merit of the ECC method characterized by (5.7) is that for fixed 
excitation rank the expansion is finite in powers of S and 2~*; however this also 
results in greater complexity with respect to other CC variants, e.g. there is no 
simple relation between S and ~*. The error of the ECC energy is likely to be 
bilinear in the errors of S and 2~*. Both S and £* are connected and the error of 
X t should be of the same order than that of S. So although the/~ given by (5.7b) 
is not an expectation value, its error is close to quadratic in the error of S. For 
the truncated ECC(k) methods, similar error estimates as for the corresponding 
ICC(k) scheme should hold. 

We shall see that it pays to go beyond TCC only if one approaches a 
high-performance level. However, then the variational approaches to be dis- 
cussed in Sect. 7 turn out to be preferable to both ICC or ECC. 

The hierarchies of 'improved' and 'extended' coupled-cluster methods pre- 
sented so far in this section are based on asymmetric expectation values. It is 
interesting to compare these with a hierarchy Of 'improved CI' methods based on 
symmetric expectation values. The first member is, of course, CI or CI(1) (with 
a truncated S) for which we have derived the error estimates (3.11) or (3.12). 
The next member would be based on the expectation value 

_ <~ [( I + S t + ½St2)H( 1 + S + ½S2)[ ~ )  (5.8) 
<~ ](l + S* + ½S'2)(1 + S + ks2) l • > 

which might be called CI(2) or 'quadratic CI' (if the latter name had not already 
been used in a different and somewhat misleading context [23]). The members of 
this symmetric hierarchy are all variational, i.e. provide upper bounds, but they 
imply non-separable wave functions and non-extensive energies, although with 
increasing order the separability defects should become smaller. The error of 
(5.8) is analogous to (5.2) 

/~ - E = [O(6) + O($3)] 2 = 0(6 2) + O((~)O(S 3) + O(S 6) (5.9) 

It differs by the term O(S 6) from the error (5.2) of (5.1b), i.e. (5.9) does not 
vanish if 6 = 0. 

While the TCC energy expression has only powers of S on the right hand 
side of H and no S*, in the methods discussed in this section powers of S* to the 
left of H appear as well. This reduces the error of the energy for a given accuracy 
of S. It can also be used to get the same accuracy of /~ with less computational 
effort. A detailed discussion of what one gains by having S* left of H has to be 
postponed until after a discussion of variational coupled-cluster theory. 

6. Relative importance of basis operators of different excitation rank 

If  one decomposes the Hamiltonian H as H0 + V such that the Hart ree-Fock 
wave function • is an eigenfunction of H0 with eigenvalue Eo = ( ~  [H[~) and 
defines 

H~. = H o +  2V (6.1) 

then one can expand both S and E in powers of 2; this leads immediately to the 
Moller-Plesset (MP) version of many-body perturbation theory (MBPT). One 
of the merits of CC theory is that one avoids the expansion in powers of 2, but 
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rather tries to keep implicit sums of the perturbation expansion to infinite order. 
Arguments in terms of MBPT in the context of CC theory are mainly used in 
order to analyse the quality of a CC ansatz truncated at a given excitation rank. 
The standard argument is that (starting from closed-shell restricted Har t ree-  
Fock) to first order in MBPT only double excitations $2 contribute to S, to 
second order single to triple excitations and finally to kth up to (k + 1) fold 
excitations contribute. From this one concludes that if in TCC one limits S to $2 
one has S correct to at least first order in MBPT, with S = S~ + $2 + $3 one has 
S correct to at least second order, and for S including UP to the k-fold 
excitations Sk one has S correct to at least (k - 1)st order in MBPT. 

A drawback of this argument is that there is no guarantee that MBPT 
converges [24]. If MBPT does converge the convergence is probably very slow. 
On the other hand the convergence of  the sequence of  CC calculations with 
increasing excitation rank included is more or less guaranteed. If  the k in Sk 
reaches the particle number n then the calculation becomes exact (i.e. equal to 
that of full CI). There is also no doubt that S is usually dominated by $2, and 
that the norm of higher Sk decreases (though not necessarily always monotoni- 
cally). Of course, $2 dominates because the matrix element (~][V, S ] ] ~ )  is 
non-vanishing only for $2. Higher order St only contribute indirectly via Sk of 
lower rank. So one can justify 

S=0($2) ;  $2=0(S) ;  $1=0($2); S k = O ( S  *-l) f o r k > ~ 3  (6.2) 

by an argument very similar to that from perturbation theory (but not relying 
on its convergence). One can also arrive at these results in terms of a Newton -  
Raphson [18] approach to the coupled-cluster equations. Starting with S = 0 one 
arrives in the first iteration cycle at S = $2 with an error 0($2). In the next cycle 
one obtains S~ and S 3 and one also updates Sz etc. The order in powers of ]IS[I 
in (6.2) corresponds exactly to those in powers of 2. 

Combining (6.2) with the error formula (3.8) for a coupled-cluster expecta- 
tion value for S --- S~ + '  • • St, i.e. 6 = O(S k) we get 

J~ - E  = O(S 2~) = O(2 2k) (6.3) 

That  an energy expectation val~e is correct to O(2 2k- 1), i.e. has an error O(2 z~) 
if the wave function is correct to O(2 ~- ~), is known as Wigner's (2N + 1)-rule of  
perturbation theory. For  the TCC energy one gets from the error formula (4.7) 

- E = O(S" +2) = O(2k + 2) (6.4) 

This would correspond to a (N + 2)-rule instead of  the (2N + 1)-rule valid for 
an expectation value; however, as stated after Eq. (4.7) this estimate is usually 
too pessimistic, and a better estimate is (4.8). To evaluate this we need the error 
of a CI expansion up to k-fold excitations. 

Truncating U at U2 gives an error of O($2); this is because both $3 and $2 2 
are missing, and these are of O($2). Truncating U at U3 one misses $4 = O(S 3) 
and S~ = O(S 2) as well as all other terms of third or higher order; the leading 
error is hence 0($2). For U =  U l + ' "  U4 one misses $5=  O(S 4) and 
$2S3 = O(S 3) and higher order terms, so that O(S 3) dominates. Tnancation at U5 
implies neglect of $6 = O(S 5) and S 3 = 0($3), giving an error of O($3). By 
induction one gets for truncation of  CI expansion at Uk an error in U 

0 = O(S t~k/2~ + 11) (6.5) 
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where [m] is the largest integer smaller than or equal to m. From (6.5) and (4.8) 
we then get the error formula for the TCC energy with S truncated at S~ 

ft, - E = O ( S  t~3k/2) + q) = 0(2 t~3k/2) + q) (6.6) 

So for large k the error of the energy does not go as 2 2k like an expectation value 
would, nor as 2 k as one would expect from Eq. (4.7), but as 2 ~3/2)k. 

The result (6.6) has been known for the lowest orders [5], but the explicit 
formula (6.6) is probably new. Note that (6.4) and (6.6) agree for k = 2 (CCSD) 
and k = 3 (CCSDT), which are the only cases that are standard in practice. 

Let us now study what one gains in going from TCC to ICC. For  ICC(2) 
characterized by (5.1) the error formula (6.4) is replaced by 

/~ - E = O ( S  ~+3) = 0 ( 2  ~+3)  (6 .7 )  

There is an obvious gain for k = 3 (CCSDT), because from (6.7) the ICC(2) 
energy is now correct to 0 ( $ 5 ) ,  but only to O(S 4) for TCC. In order to be correct 
to O ( S  5) in TCC one has to include $4. If  one truncates at $4 the ICC(2) 
equations characterized by (5.1) don' t  present an advantage over TCC, since the 
error is now O(S 7) in both cases. To get an error O(S 8) one has to go to the next 
member ICC(3) of the ICC hierarchy. We shall see in the following sections that 
for highly accurate coupled-cluster calculations the variational and the unitary 
ansatz do present advantages. 

Let us finally discuss the error of  CI truncated at some excitation rank Uk. 
In view of  (3.11) and (6.5) we get 

- E = O ( S  2t~k/2)l+ 1) (6.8) 

The interesting result is that truncation at k = 2 or k = 3 leads to a result correct 
to 0(2 3). In fact inclusion of connected triple excitations does not really pay as 
long as one omits disconnected quadruples. 

The errors of  various approaches for truncation of the operator basis S~ are 
collected in Table 1. The error of CI(2) as defined by (5.8) is of  O(S 4) for S = $2 
i.e. CI(2)SD and O(S 6) for S = S~ + $2 + $3 i.e. CI(2)SDT. 

Table 1. Energy err'ors for truncation at Sk for various 
schemes 

k 0 VCC TCC ICC(2) CI 
U C C  

2 2 4 4 4 4 
3 2 6 5 6 4 
4 3 8 7 7 6 
5 3 10 8 8 6 
6 4 12 10 10 8 
7 4 14 11 11 8 
8 5 16 13 13 10 

k is the excitation rank after which one truncates. The 
error of  the wave operator S is O(S k) = 0(2 k) 
The entries in the table indicate the exponent of  S or 2 in 
the error estimate for 0 (the error of  the CI operator U) 
and for the energies in schemes VCC etc. 
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7. Variational and unitary coupled-cluster theory 

From the point of view of the error analysis, coupled-cluster theory based on 
stationarity of an expectation value is the best that one can do. There are 
essentially two possibilities to formulate a coupled-cluster expectation value, 
either for a wave function in intermediate normalization (7.1) or in terms of a 
unitary operator (7.2). We shall refer to coupled-cluster methods based on (7.1) 
or (7.2) [11, 14, 18125-33] as variational (VCC) or unitary (UCC) coupled 
cluster respectively. The expectation value of variational coupled-cluster theory 
can also be written in the form (7.3) where disconnected terms in the numerator 
have been cancelled with the denominator [2b, 31]. The subscript L indicates that 
only linked (connected) terms must be taken, taking care, however, of all EPV 
(exclusion principle violating) diagrams, which makes the expansion infinite. 

£ = ( ~  leS*neS[~) (7.1) 

( ~ le~ eSl ~ ) 

ff~ = (~ le -~He~[~) ;  cr = T -  T* (7.2) 

ff~ = ( cI) leSt HeSl ~ )L (7.3) 

There is a fourth possible energy expression, namely that obtained from (7.1) on 
Taylor-expanding the denominator 

= ( ~  leStHeSlcp){1 + [(4~ leS*eSl ~ )  - l]} -1 (7.4) 

Order by order, this is essentially identical with (7.3) - j u s t  written differently. 
The connectedness of (7.4) is less obvious than that of (7.3). 

We are particularly concerned with closed-shell reference wave functions ~, 
but the generalization to open-shell states is usually easier than for TCC. 

A closed evaluation of/~ is possible for (7.1) but this is so complicated that 
it has little chance of being realized. We therefore accept that E will be given as 
an infinite expansion that has to be truncated somewhere. It is important that in 
(7.1) one must not expand and truncate numerator and denominator separately, 
since then extensivity is lost (approaches of this kind where discussed in Sect. 5). 

If  one truncates an energy expansion given by an infinite series, one makes 
two errors: one due to truncation of the operator basis i.e. the error 6 of S (or 
T), and one error due to truncation of the expansion in powers of S. If  one 
truncates at O(S ~) the error of the energy is usually 

£ - ~ = 0(6  2) + o ( s  ~+ ') (7.5) 
Extensivity is guaranteed and we need not worry about it. The error formula 
(7.5) differs from those of TCC or ICC, which contain a factor 0(6), such that 
the error vanishes if 6 = 0, i.e. if eS~ is exact. This is now no longer the case. 
One may regard this as a drawback, but it is less serious than one might think, 
especially since in view of the discussion in Sect. 6 6 can usually be expressed in 
orders of ]IS II" We must accept that unlike in TCC or ICC theory the special case 
of a supersystem of non-interacting two-electron systems is not treated exactly 
(unless one uses closed summations of infinite series as in Sect. 8). 

Let us denote the kth order contribution (in powers of S or T) to the energy 
as E (k). Note the conceptual difference between the kth order in powers of S 
(where actually k-fold products of S operators appear) and the shorthand 
notation O(S ~) which means O(llSIIk), and which is dominated by the largest 
contribution to S, which will usually be contained in the two-electron part 5:2. 
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The lowest E tk) of the unitary expansion (UCC) (7.2) (see also [25b]) are (we 
have omitted terms like (~  IHT  3[ eb) which necessarily vanish) 

e ~°> = <~ In[~> 

E (') -- (~  [[H, a]l~ > = 2 R e ( ~  IHT[,~ ) 
E (2) --½<¢ I[[H, a], a][~> = Re(¢ [HT2+ TtHT-  T+THIqb ) 

E (3) = ~(~ [[[[H, a], a], a][~)> = ½Re(~]- HTtT 2 - HTTtT + HTt2T]~) 

+ Re ( • I TtHT 2 - TtHT t T[ 4) > 

= ~ R e ( q b  I -- H T t T  3 - H T T t T  e - H T Z T t T  + H T t 2 T  z 

+ H T t T T t T  + HTTt2T[  q~ > 

+ ½Re ( • [TtHT 3 - T * H T  t T 2 - T t H T T  *T + T ~ H T  *eT I ,I, > 

+ ¼Re<~)[T tTHT*T - T t T t H T ~ T  - T t T H T  2 + Tt2HT214)> (7.6) 

while the corresponding contributions to the nonunitary variational energy VCC 
(7.3, 4) are 

E(O) _ (+ [HI ~> 
E (') = 2Re(q~ ]HS[+> 
E (2) = Re ( • [HS: + StHSIq~ >L 

= R e ( ~  Ins 2 + S+HS I ~> - <~ [HI ~ > < ~  Is+sI • > 

E (3) = Re  ( • [stns=l • >L 

-- Re<~ IStnS2l ~> - 2Re<~ InsI ~><~  IatsI ~> 
-- (~ [H[~>Re(~ IStS2I@ > 

E(4> = ¼<~ IS+'HS' l ¢ >~ + ½<¢ IS+HS'] ¢>~ 

= ¼ <~ IS+~HS= I 4, > + ½ <~ [S+HS~I ¢ > 
-- {(¢ [StHSI ~> + R e < ~  IHS2[ ¢>}(~ ISIS[ ¢ > 

-- 2Re < ~) IHSI • >Re ( ¢  ISt S21 • > 

- <~lnl~>{¼<~lS+=S=[~> + ~<~ IS+S31~> - <~ IS+Sl~> 2} ( 7 . 7 )  

In (7.6) and (7.7) all commutators have been resolved into simple products. So 
the connected nature is no longer obvious, and various terms in the sums taken 
apart may well contain disconnected diagrams which only cancel when every- 
thing is taken together. Of course, one can ignore all these disconnected 
contributions. Then all terms which are products of matrix elements can be 
ignored from the outset. It may, however, turn out convenient not to cancel all 
disconnected terms, but only those where the two factors have no common 
indices, which we refer to as disjoint [32]. After cancellation both joint discon- 
nected diagrams and connected diagrams (which are afor t ior i  joint)  survive. We 
use the subscript J for joint diagrams. So all diagrams in (7.6) or (7.7) could be 
given the subscript J (if they do not already carry the subscript L for 
linked = connected). The difference between linked (L) and joint (J) is that for a 
classification into joint and disjoint, EPV diagrams must be omitted (otherwise 
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these diagrams would be counted twice). While linkedness is determined by the 
topology of  the diagrams only, the discrimination between joint and disjoint 
requires diagrams with spin-orbital labels. 

The zeroth, first and second order terms in (7.6) and (7.7) agree (with T 
replaced by S), while there are differences to third and higher orders. This is best 
seen if we consider the special case when S or T consists of two-particle 
excitation operators only, i.e. S = $2, T = T2. In this case (7.6) and (7.7) simplify 
to 

E (2) = Re ( ¢  [T*HT - T* TH[ ¢ )  

E (3) = ~Re(¢ I r*Hr~l  ¢ > - 4<¢ I r*r l  ¢ ) R e ( ¢  IHT I ¢ )  

E(4) = 1 < ¢ [TtaHT21 ¢ > _ ~ Re ( ¢ I T* HT* T=I ¢ > 

- ½<¢ [T*HTI ¢ ><¢ ITtTI ¢> 

+ <¢ IHI¢ >{~<¢ Irtrl ¢>2 + ~<¢ ir,2r21 ¢>} (7.8) 
E '2' = <¢ IS*HSl ¢>L = <¢ IS*H< ¢ > - <~ IHI ¢ ><¢ Is*Sl ¢ > 

E °) = R e ( ¢  IStHS~I ¢>= 

= Re<¢ IS*l-lS21 ¢ > - 2Re <¢ I/~sl ¢><¢ IS*Sl ¢ > 

E(4, : 1 ( ¢  [S,2HS21 ¢ >= 

= ¼<¢ IS'2HS21 ¢ ) - <¢ IS*HSI ¢ )<~ Is*sl ¢ > 
+ <¢ IHI ¢>{<¢ Is*sl ¢ > = - ¼<¢ Is*=s21 ¢ >} (7.9) 

One sees that E °) in (7.8) is formally 2/3 of E (3) in (7.9); while the relation 
between E (4) in (7.8) and (7.9) is somewhat more complicated, there is roughly 
a factor 3 between the two expressions. 

The fact that the UCC expressions are somewhat more complicated is 
compensated by an obviously faster convergence. This becomes manifest if, for 
a moment, we consider a two-particle state. For this, the expressions (7.8) and 
(7.9) simplify even more, namely to 

E(3) = _ 4 t2Re ( ¢  IHT[ O~ ) 

E (4) = --½t2(¢ IT*HTI ¢>  + ½t'<¢ In[¢> 
E (5) = 4t4Re ( ¢  IHT[ ¢> (7.10) 

E ~3) = -- 2s 2Re (q) IHSl ¢ > 

E (4) = -s2(¢ IS*Hal ¢ > + 84<¢ Inl • > 

E (5) = 2s4Re(¢ IHS[ ~ )  (7.11) 

with 

t 2=  ( ~  IT*TIC); s 2 = (¢IS*S[~)) (7.12) 

In this case a summation to infinite order is possible, with the respective results 
[10c] 

2 sin t cos t sin 2 t 
E = cos 2 t ( ¢ l a l ~ )  ~ t R e ( ~ l n z l ¢ )  + 7 - -  (¢[Z*nTlcb) (7.13) 

E=( l+s2) - ' {<¢ ln l¢ )+Re<,~ lns l¢ )+<,~ l s*ns l¢ ) }  (7.14) 



Error analysis and improvements of  coupled-cluster theory 365 

In this special case there is a simple relation between S and T, namely 

S = tan t T = {1 + O(t2)}T ('7.15) 
t 

Some contributions of  higher orders in VCC arise in lower orders in UCC. The 
kth  order of  UCC should generally be a better approximation than the k th  order 
of  VCC. Although the same error estimate (7.5) applies to both schemes, they 
have a different factor for the O(S k+ 1) term. 

Let us now return to the general case. We truncate the expansion of E at 
some kth  order in S or T and make this expansion stationary with respect to 
variation of the coefficients Ck or d k in which T or S are expanded in the operator 
basis {Xk} 

S =•CkXk; T=Zd~X~ (7.16) 
k k 

For  E according to (7.7) truncated at E (2~ we get the stationary condition 

Re{(q~[HXk[q~) + (q~[HSXk + StHXkIq~)}L =O (7.17) 

Multiplication of (7.17) by c~ and summation over k yields 

Re{(~ IHSI ~b) + (q~ IHS z + StHS[ ~)}L = 0 (7.18) 

I f  we combine the consequence (7.18) of  the energy being stationary with the 
second order energy expression we get 

E=E(°)+E°~+E(2~=(q~[H[~)+Re(~IHSI~)=E(°)+½E~I) (7.19) 

In a completely analogous way one can show that for E truncated at k th  order 
and made stationary one gets as a generalization of  (7.18) and (7.19) 

E °) + 2E (2) + 3E (3) + .  • • kE (I') = 0 (7.20) 

E = E t ° ) + E ( J ) +  ' ' ' E t ~ ) = E  t ) + ~ - - E ( 1 ) +  E(2)+ ' ' -  E (k-l) (7.21) 

For  k = 3 or 4 (7.21) reads 

E = E (0) + E (1) + E (2) q- E (3) - -  E (°) + 2E( I )  -[- 1E(2) (7.22a) 

E = E ~°) d-"  " " E (4) ----- E ¢°) + 3E¢1) + ½E (2) + zEt ca) (7.22b) 

Of  course, one can use (7.21) to eliminate other than just the highest order terms 
in (7.20), e.g. 

E = E ¢°) + ½E (1~ - ½E (s) - E (4) - -  ~E ~s) . . . .  (7.23) 

It should be noted that the well-known energy expression in intermediate 
normalization (1.3a) does not follow from stationarity of  the energy expectation 
value (7.1) with respect to variation of  S* and S, it only follows from variation 
with respect to e s as a whole, i.e. in a CI type approach. The expression (1.3a) 
is hence compatible with stationarity of  (7.1) only if the ansatz (1.1) is exact. 
This is, for example, the case for a two electron system, as described by (7.14), 
where one easily sees that 

½E ¢3) + E (4) -b 3E¢5) + . . . .  0 (7.24) 

and (7.23) immediately implies (7.3a). It  does, of  course, not hold in the unitary 
normalization as given by (7.13). 
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In such a truncated VCC or UCC approach one is sure to get the error of the 
energy linear in the number of particles and otherwise of O(S k+ 1) and there is an 
obvious hierarchy, namely that of approximations defined in powers of S or T. 
There is also a second hierarchy, already known from TCC, namely in terms of 
the maximum excitation rank included in the basis. We must combine the two 
hierarchies to a single consistent one. 

We are further faced with the observation that the stationarity condition 
mixes orders in powers of  S. In CEPA-0, that may also be called VCC(3) - the 
3 indicates that this is correct to third order in S or 2 (see later) - there is the 
simple relation E (2) = -½E(t); hence E (° and E (2) are of the same order of 
magnitude. 

One should realize that the approach in this section is somewhat converse to 
that used in the derivation o f T c C .  In TCC we have started from the stationarity 
conditions and a simplified energy expression that only holds if the stationarity 
conditions are satisfied, and we have then constructed the functionals that we 
actually make stationary. The~error analysis was then based on these functionals. 
Now we start from the functionals to be made stationary, get then the stationar- 
ity conditions and finally the simplified energy expressions that hold in the case 
of stationarity. The error analysis has to be based on the truncated energy 
expressions to be made stationary. The stationarity conditions are used to 
determine S and hence tell something about S. 

We know that usually S is dominated by the double excitation part $2. Let 
us therefore first consider the case that S = $2. For  k even, products of  an even 
number of  $2 or $2' operators contribute to E (k), while for k odd it is products 
with an odd number. For  k odd, only that part of H contributes that takes care 
of a double excitation or de-excitation, i.e. matrix elements like V~b (for i , j  
occupied, a, b virtual). These are exchange-type matrix elements. For  k even the 
S and S t factors must cancel each other and the matrix elements of H are of the 

i a i j  ia form f~ , f a ,  Vi:, Via, where fPq are matrix elements of the Fock operator. Such 
matrix elements are usually much larger (in the language of perturbation theory 
matrix elements involving V carry a factor 2 and are hence smaller by a factor 
2 than matrix elements involving f ;  but even the Coulomb-like matrix elements 
like V~g are usually significantly larger than V~b). This means that the E (k) with 
k odd are relatively much smaller than E ~k) with k even, to the extent that for the 
$2 which makes the energy functional stationary, E ~3) is of the same order of 
magnitude as E (4) and E (5) a s  E (6). The E (k) with k odd are always smaller by one 
order of Us][ than indicated by the formal appearence of S. So E ~')= O($2); 
E (2) = O(S ); E (3) = O($4); E (4) = O(S 4) etc. The same conclusions can also be 
obtained in terms of perturbation theory, i.e. by treating H0 and 2V differently, 
but we don' t  wish to formalize this decomposition of H. 

In view of this we must revise our error formula for CEPA-0 (i.e. for 
truncation of VCC or UCC at k = 2) from (3.17) to 

J~ - E = 0(62) + O(S 4) (7.25) 

i.e. as with CCSD, CEPA-0 is correct to O($3); the two schemes differ by some 
terms O($4), but none contains all terms O($4). 

In principle one may truncate VCC or UCC at any k. However truncation at 
even orders is usually preferable. For truncation at k odd, one includes one term 
and omits another one of the same order of  magnitude, while for truncation at 
k even, the next term ignored is smaller by O(S 2) than the last one considered. 
So the next recommended VCC or UCC truncation after CEPA-0 is that after 
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k = 4. To be consistent with the nomenclature of Bartlett et al. [25], who defined 
truncated VCC and UCC schemes somewhat differently (see later), we refer to a 
scheme truncated at E (~) as VCC(k + 1) or VUCC(k + 1). In this convention 
CEPA-0 is identical with VCC(3) or VUCC(3) and the next recommended 
improvement would be VCC(5) or VUCC(5). For these latter schemes we have 
the error formula 

- E = 0(62) + O(S 6) (7.26) 

We write VUCC(k) rather than UCC(k), because UCC(k) schemes have already 
been defined somewhat differently by Bartlett and Noga [25]. To have an 
approximation scheme consistently correct to ($5), i.e. to have ~ = O($3), we 
have to take S = $1 + $2 + $3, i.e. explicitly the VCC(5)SDT or VUCC(5)SDT 
approach. The hierarchy continues with VCC(7)SDTQ or VUCC(7)SDTQ, 
which are accurate to O($7). 

Being aware of the accuracy O(S m) achievable at a given level, it usually does 
not make much sense to include terms of higher order than is generally 
achievable. Consider for example VUCC(5) with a = o" 1 ~- 0" 2 -~- 0"3- It is sufficient 
to include a2 up to 4-fold commutators, 0"~ and a 3 only up to double commuta- 
tors, and treat mixed commutators analogously. Explicitly this means that we 
take in VUCC(5) 

1 H E = <4  IH -[- IN, 0"1] ~- [H, 021 -3 t- l [ [o ,  0-1], 0"1] ~- 2[[ , 0"1], 0"2] 

+ ½[[H, 0-21, 0"11 + ½[[n, 0-21, 0-21 + ½[[H, 0",1, 0"31 
+ ½[[H, 0-3], 0"1 ] + ½[[H, 0"3], 0"3] + ½[[H, 0"3], a2] 

1 H -[- 2[[ , 0.2], 0"3] + 1[[[ H,  0-2], 0.2], 0-2] 

+ ~[[[H, 0.1], 0"2], 0"2] +-~[[[n, 0"2], 0",], 0"2] +-~[[[H, 0"2], 0"2], 0", ] 

+-~[[[H, 0"3], 0"2], 0"2] +-~[[[H, 0"2], 0"3], 0"2] + ~[[[H, a:], a2], 0-3] 

+ ~4[[[[ H, 0.2], 0"2], 0"2], 0-2] + 2~[[[[U, 0",], 0-2], 0"2], 0"2] 

+ " "  + 2~[[[[~//, 0"2], a:], 0"2], 0"3][4) (7.27) 

As to the question whether VCC or UCC is preferable, we can make the 
following remark. The UCC expressions are usually somewhat more complicated 
(e.g. compare Eqs. (7.6) and (7.7)), but UCC should converge faster. In the 
two-electron case the E (k) of UCC converge essentially as cos 2 t, while those of 
VCC converge as (1 + s:)-1. If  one truncates either function at O(x2"), the error 
is, of course, O(x 2" + 2), but for cos 2 t it is dominated by [(2n + 2)!]-~t 2" +: while 
for [1 +s2] -1 it is s 2n+2. While cosZt converges for all t, [ 1 -  s2] -1 converges 
only for ]s I<  1. 

Both variational and unitary coupled-cluster expansions have been studied in 
detail by Bartlett et al. [25a,b]. For a recent application see [25c]. The variational 
coupled-cluster method of Bartlett and Noga, called XCC (for expectation-value 
coupled-cluster), differs from the present VCC mainly in the following aspect. 
These authors decompose H into Ho and V such that for example 

E (2) -- ( 4  IHoS a + S t H o S I 4  ) + ( 4  IVS 2 + S t V S ] 4 )  = E(o 2) + E] 2) (7.28) 

Then the energy contributions are regrouped, the contributions/~(~) of the XCC 
expansions are defined as 

E(~) = E(o k) + E~k- 1) (7.29) 
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H o and V are hence treated separately very much in the tradition of perturbation 
theory where V appears with an extra factor 2. It is more in the spirit of the 
variational approach not to separate H0 and V. The choice of Bartlett et al. also 
allows one to define XCC(k) or UCC (k) for k even. 

For k odd Bartlett's XCC(k) and our VCC(k) should not differ too much, 
similarly our VUCC(k) should be similar to but not identical with their UCC(k). 
A numerical comparison of the two kinds of hierarchies has not yet been made. 

8. Infinite summation of joint renormalization terms 

For the special case of a supersystem consisting of n non-interacting two-electron 
systems both the Hamiltonian H and the cluster operator S = $2 can be divided 
into' parts acting on different exclusive subspaces 

H =  s =  (81) 
,u=l #=1 

The subscript on S now counts subsystems and does not mean the excitation 
rank. The VCC energy expectation value can then be summed as shown in (7.14) 
for a two-electron system with the result 

E = < # IHI ¢~ > + ~ 2Re < ~ [H"S" I ~ > + < ~ IS*~[H"' S"II ~ > (8.2) 
1 + Is *s  

This is of the form of the coupled pair functional (CPF) proposed by Ahlrichs 
[34] and looks very much like the CEPA-0 functional, but with each pair 
correlation part divided by an individual denominator. The expression (8.2) is 
exact for this special supersystem in the sense that if the operator basis consists 
of all two-particle excitation operators constructable from the one-electron basis, 
then (8.2) is equal to the 'full-CI' expectation value. 

One may object that (8.2) is only valid if one chooses the S operators such 
that they perform excitations within the subspaces, and not if one chooses an 
arbitrary basis in the full orbital space and takes excitations in terms of these. In 
other words, the expression (8.2) is not unitary-invariant. This is a minor 
drawback for such supersystems since one usually knows the subspaces, but for 
a generalization to systems that are not strictly separable one would prefer a 
unitary-invariant formulation. 

For the discussion in this section it is important to note that we must 
distinguish orbital labels. This implies that we should include only those dia- 
grams that obey the Pauli principle. Diagrams corresponding to 

< IS* HS S  I > (8.3) 

are necessarily of EPV type and should not be present. This means that we must 
not start from expressions where all disconnected diagrams have been cancelled. 
Rather, we should let only disconnected diagrams with distinct orbital labels 
cancel (i.e. disjoint diagrams), while joint disconnected diagrams should be kept. 
These diagrams will then be summed as far as they form geometrical series to 
yield an energy denominator. The book-keeping of spin-orbital indices makes 
things rather tedious. 

Let us start with a discussion of E (3) of VCC (7.9) without making special 
assumptions on the state 

E (3) = Re (~  IS*HS 2 - 2StSHS[ ~ )  (8.4) 
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We write (using the tensor notation for normal product operators [27]) 

S =  Z S i j=½Z '  S~; S t = ½ ~  ' Sij (8.5a) 
i < j  i,j i,j 

S i  j Z t ij ab.  S i J  = ~ t  ab ij . . . .  = cabaij , ~ cij aab, c~6 = --C~b . . . .  (8.5b) 
a,b a,b 

= ~ '  - i j  ab.  " ' =  E '  -ab ij (8.5C) g i j  / ,  g a b a i j  , g'J g i j  a a b  
a,b a,b 

a~jb = t t • " . . . . .  ii aaabajai, g~b = <ab lrF2'lij>; ~ b  =g~b -- gab (8.5d) 

The labels refer to spin-orbitals and so the summations over i and j go from 1 
to 2n. Then (8.4) becomes 

E ~3) = ½Re ~ '  ~ '  (q~ [SijgktSijSk, + Sijgk'SuSkj + Sijgk'SikSjt -- SOSijgk'Sk, [~b) 
i,j k,I 

= ½Re E '  E '  ( 0  [S~jgk'(Si, Skj+ S~kSj,)lq~ ) 
i , j~ k,l 

- E '  <~ls 'Jsi jgUSijl '~) - E'(q~lSiJSi.i(gkiSki + g~JSkj)[~) (8.6) 
i,j i,j,k 

In the special case that a decomposition (8.1) is possible, this reduces to 

E (3> = - 2 Y. (O IS'S,H~S, I q ~ ) = -- 2 £ (cb IS,S,]cb ) (cb IH"S,[,I~ ) 
~ (8.7) 

S, = S~.,+,; H~ = g,.,+u 

and a factorization is possible in which the first term in the geometric series leads 
to (8.2). In the general case given by (8.6) the second and third terms can be 
factorized together to yield 

Z '  ( 0  IgiJaijlo )Oij (8.8a) 
i,j 

Dig = (~ IS'wSiJ I°) +Z {< lsik&l > + < lSkJ&jl >} (8.8b) 

However, the first term in (8.6) cannot be factorized. For a generalization of 
(8.2) one has three choices: 

1. One ignores the first term in (8.6) and uses the factorization (8.8b), i.e. one 
sums up a geometric series in this Dij. In a different context this choice has been 
suggested by Kelly and Sessler [35]. 

2. One argues that the fully-joint terms dominate, where the two factors in (8.6) 
agree in the two indices, i.e. one keeps only the second term in (8.6) and replaces 
Oij of (8.8b) by (qilS°SaIO).  

3. One finds a compromise between these two choices, neither of which is 
unitary-invariant, by requiring unitary invariance in cases of special interest. This 
concept goes back to W. Meyer [10a] and has recently been taken up by R. 
Ahlrichs et al. [34]. The main idea is that the requirement of unitary invariance 
is relevant when localized non-interacting (or slightly interacting) pairs are 
identical, such that canonical orbitals differ significantly from localized ones; this 
is not the case for sufficiently different pairs. Hence, one should require unitary 
invariance for a supersystem consisting of identical localized pairs. It can be 



370 w. Kutzelnigg 

made plausible (see Appendix A) that in this special case the first term in (8.6) 
is just half of the last one, such that a factorization of the type (8.8) is possible, 
but with 

Di, = +&Z {<¢ IW%l¢> + <¢ Is  sk, (8.9) 

It is then rather straightforward to find all terms in the infinite order VCC 
expression that factorize (at least approximately) and to recognize geometrical 
series that can be summed. Assuming further that the arithmetic mean of 1 + D~j 
and 1 + Dkt differs only a little from the geometric mean, one can arrive at the 
expression 

t7 + Y, 2Re(g']HSij l¢)  + (~[S~(H -Eo)Sijl,I~) 
i<j 1 + D o 

+ (8.10) 
(i <j )  ¢ (k < l) %~( 1 -'~ Dij)( 1 + Dkl ) 

which has been proposed by R. Ahlrichs et al. [34] on more heuristic grounds 
and has been called coupled-pair functional (CPF). (As to a precursor of CPF 
see [36].) 

We mention that one of the main contributions of Sinano~lu [37] to 
many-electron theory has been to recognize that the cluster structure of the wave 
function implies a substantial cancellation between terms in the numerator and 
the denominator in the energy expectation value, with the result that in a good 
approximation each pair gets its individual denominator. 

As shown by Gdanitz and Ahlrichs [38] it is often a very good approximation 
to take all energy denominators equal, i.e. to choose 

gi, j (8.H) 
This approximation (which can be based on Eq. (A.2) of Appendix A), referred 
to as 'averaged coupled-pair' functional (ACPF), has actually been proposed for 
multiference states; we consider here only the special case of a single Slater 
determinant reference function. It should be mentioned that Pulay [39] has also 
proposed a functional which is made stationary in the CEPA approximation. It 
does not contain individual denominators like CPF. 

Although CPF-type methods have been very successful in practice, their 
somewhat ad-hoc introduction [34] may have been regarded as a drawback, since 
CPF did not appear as a member in a hierarchy of approximations that 
eventually led to an exact solution. The present derivation can remedy this 
drawback. While summing certain contributions in VCC to infinite order one 
need not neglect the remaining ones as in CPF, but one can evaluate them 
exactly up to a given order. 

The present derivation of CPF from VCC has some similarities to the older 
derivation [10c] of CEPA from TCC. In both cases one uses the fact that the 
most important diagrams going beyond CEPA-0 factorize. Nevertheless, al- 
though the working equations of CEPA and CPF are very similar, there is a 
significant conceptual difference. While in the derivation of CEPA the TCC-D 
equations were taken for granted, we have here started from the VCC expecta- 
tion value, i.e. the problem of the validity of the TCC equations is circumvented. 
By the partial summation of geometrical series we have managed to get exact 
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results for the special case of  a supersystem of non-interacting pairs while 
keeping all the other advantages of VCC. 

In this context one should mention that an alternative to CEPA-type 
methods, now called ACC (for approximate coupled-cluster [40]), have been 
proposed by Jankowski and Paldus [7]. These start from the TCC equations and 
neglect certain classes of diagrams in such a way that all the factorizable 
diagrams are kept. Since this procedure is only based on the topology of the 
diagrams and not oiT-labels, it is automatically unitary-invariant, although 
numerically there is little difference from the corresponding CEPA methods. 
Since not all diagrams which are kept factorize in the form (8.8a), an ACC 
generalization of  CPF does not appear to be possible. It is somewhat astonishing 
that ACC has hardly been applied [40]. A short account of  the application of the 
ACC philosophy to the E (3) of  VCC (8.4) is given in Appendix B. 

9. Comparison of various coupled-cluster methods for an ansatz limited 
to double substitutions (CCD)  

The simplest approach is CEPA-0 or LCC-D with the functional (in this section 
S or T is always equal to $2 or T2) 

CEPA-0: Fo(S)=<,~IH+HS+S*H+S*[H,S][~> (9.1) 

The TCC functional (4.13) has an extra term in addition to (9.1) 

TCC-D: F(S*) = Fo(S* ) + (q~ I½S*HS 2 -- S*SHS] ~> (9.2) 

We have written this as F(S t) to indicate that it is only made stationary with 
respect to variation of S t . 

We do not consider ICC because for S = $2 the error is of O(S 4) as for TCC, 
but ICC is much more complicated. For  variational coupled cluster up to third 
order in S we get 

VCC(4)D: F4(S ) =F0 (S  ) +Re(~IStHS2-ZS*SHSIcb> (9.3) 

The corresponding expression of VUCC(4)D is 

VUCC(4)D: F4(T ) = Fo(T ) + 2Re(q9 ITHT 2 -- 2TtTHT I ~> (9.4) 

If we go to the next order in VCC or VUCC (remember our remark in Sect. 7 
that one should not truncate at an odd order in S or T) we get respectively 

VCC(5)D: Fs(S) = F4(S) + ¼(¢b [S*2(H - Eo)S2l~> 

- <~IS*(H--Eo)SI~><~[S*S[~> (9.5) 

UCC(5)D: Fs(~r) = F.(~) + ¼<~ I;r*2(no - eo):r2]~> 

-- ½Re ( ~  [T*(H o - Eo)T t T2I ~ > 

--½<~[T*(Ho--Eo)T[~><q, IT*TI~> (9.6) 

Finally, we also consider the CPF functional (8.10). 
Let us assume that the additional terms to Fo(S) are so small that it is 

sufficient to make Fo(S) stationary with respect to variation of S and to evaluate 
the corrections in terms of  this S. Then we can use the fact that 

<~ IHS + S*H I q~> + 2 ( ~  IS*HS[ • > -- 2(q~ IS*SI ~><~ Igl ~> = 0 (9.7) 

to simplify the VCC(5) and VUCC(5) expressions. 
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VCC(5)D: E 5 = Fo(S) + R e ( ~  IS*HS 2 - S * S H S [ ~ )  

+ ¼(cb [S*2(H - Eo)S*2[ ~ )  (9.8) 

VUCC(5)D: E5 = Fo(T) + R e ( ~  I ~ T t H T  2 - T * T H T ] ~ )  

+ ¼<~ I Tt2(H - eo)T21 • > 
- ½Re <~ I Tt(H - Eo)T t r21 • > (9.9) 

We see that in (9.2), (9.8) and (9.9) the contribution 

-Re<~ls*snsl~> = (~lStSl~>Re(~lnsl~) (9.10) 

is the same (except for the fact that in TCC the 'Re'  is missing), while the term 
<~IS*HS21~> appears with different factors and there are additional terms in 
St2S 2 or Tt2T 2 in (9.8) and (9.9). In the case where TCC is exact, the term 

IS*HS=I > vanishes and so the three expressions TCC, VCC(4) agree except 
for the terms in St2S 2 or Tt2T 2. CPF also agrees with TCC for this case. 

From the point of view the error analysis we have 

CEPA-0: O(S 4) + 0(6 2) 

TCC-D, CPF-D: O(S 2) • 0(6) 

VCC(5)D; UCC(5)D: 0(S 6) -~- O(~ 2) 
All errors are linear in n. Which approach is the most accurate? Of  course, 6 is 
determined by the neglect of triple substitutions which are of O($2), and hence 
the error for all methods discussed here is of O($4). In the special case that single 
and triple (and higher) substitutions don't  contribute at all, ~ = 0 and TCC as 
well as CPF are best, since they become exact, while VCC(5) or VUCC(5) are 
not bad with an error O($6); CEPA-0 is the worst, with an error O($4). Consider 
an intermediate case of  weakly coupled pairs where 6 does not vanish but is very 
small, say 6 = O($3); in this case VCC(5) or VUCC(5) are best with an error of 
O($6), while TCC has only an error 0($5). VUCC(5) should generally be better 
than VCC(5) since VUCC converges faster than VCC. 

The main conclusion is that in a coupled-cluster treatment limited to S = Sz 
all methods discussed h e r e -  except C E P A - 0 -  are of comparable quality. De- 
pending on the case one may be slightly better than the other. In spite of its 
asymmetry TCC is quite competitive, at least for energy calculations. For  other 
properties the situation changes Somewhat (see Sect. 12). 

From the point of view of the computational effort CEPA-0 is cheaper than 
TCC-D, and TCC-D is cheaper than the other schemes discussed here. However 
all approaches scale with Ni," n 6 where Nit is the number of iterations and n the 
dimension of the basis (see Sect. 12), so the computational effort should not 
differ significantly. 

I0. Coupled-cluster methods with single and double substitutions (CCSD) 

Since both S1 and $3 are of O(S 2) it does not appear to be very consistent to 
include SI (in addition to $2) but to ignore $3. There are, nevertheless, a few 
arguments in favour of a CCSD approach. 

1. $1 is computationally much cheaper than $3. 

2. For  properties Sl is (unlike $3) much more important than for the energy, 
and as important as $2. 
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3. The Har t ree-Fock reference function • can be regarded as accounting for $1 
to infinite order (in the absence of $2, $3 etc.), i.e. one has from the outset 
treated single excitations in a priviledged way. This has been possible since e sl 
applied to a Slater determinant yields another Slater determinant (this trivial 
statement is often referred to as Thouless' theorem). So there is some point in 
treating S~ in a priviledged way even in the presence of $2. 

4. If 4~ is not the Hart ree-Fock function, S~ is very important and has to be 
included. One may want to have a theory that does not require this special choice 
of ~. However, the simplifications proposed in view of the smallness of $1 are 
then not valid. 

5. In the open-shell case, where the Brillouin theorem holds in a limited way 
only, some single excitations are necessary even to lowest order. 

In principle we could study the same methods as in Sect. 9, but there is not 
too much point in repeating everything now with S = S~ + $2. Since $3 is 
neglected, the error 6 is of 0($2), and hence the overall error of all methods is 
of O(S 4) - scaling linearly with n. By inclusion of S1 one can only hope to get 
a part of the contribution O($4). As will be pointed out in Sect. 11, the error of 
TCC-SDT is of 0($5), while with ICC-SDT, VCC(5)-SDT, UVCC(5)-SDT one 
achieves an error O($6). On the SD level it does not make sense to go beyond 
TCC-SD, except in special cases where S, is much more important than $3; 
however, then an approach based on Brueckner orbitals may be preferable. 

CEPA-0 with inclusion of single substitutions, which may also be referred to 
as LCC-SD, is characterized by 

LCC-SD: Fo(Sa, $2) = (q~ I H + HS, + S*,H + H& + S~H + S~[H, &] 

+ ST[H, $21 + S*2[H, S,I + ST[H, S,]I~> (10.1) 

Often one can omit those contributions that vanish by virtue of the Briltouin 
theorem, i.e. ( ~  IHS1 + StlHI~I,>. The TCC-SD [5c] functional has extra contri- 
butions in addition to (10.1) 

TCC-SD: F(S~, St) = Fo(SI, S~) + <¢, [l(1 + SI + S~)HS~ 
1 3 + (sT + S*~)H(S,& + ~S,) 

"~ 1 2 1 2 1 4 Jr- S 2 H ( $ S  2 -~-~S1S 2 -I- ~'~S 1) I tI) > (10.2) 

We argued at the beginning of this section that there is no point in going beyond 
terms of O(S 4) as long as we neglect $3. Neglecting terms of higher order than 
O(S 4) we are left with 

SCC-SD: F(S~,S~) =Fo(Stl,S~) + <cI, ~I$HS 12 q_ St2HSIS2_.t_gS2HS2[fI) # 2 (10.3) 

where SCC stands for 'simplified coupled-cluster'. 
It is interesting to compare this with other simplified CC-SD approaches 

proposed in the literature. The most recent and most popular one is Pople et al.'s 
'quadratic CI' [23a], which corresponds to the following functional 

QCISD: F(SI, St) = F0(SI, S~) + ¢,4, IS~HSI $2 , t 2 +~S2HS2ldp> (10.4) 
I 2 QCISD misses the terms ~HS, and S~HSI $2 which are of O(S 4) while it contains 

the term S~HS1S2 that is of O(SS). As to the controversy on QCI, both 
concerning the name and the quality of this approximation see [23b,c]. 
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The CPMET-C approximation which Paldus et at. [2c] proposed long ago 
does contain ~ 2 ~HSi and S~HSi S: but differs from (10.3) in containing the O(S 5) 
contribution S~HSI $2. Another old approximation, called CCSD-1 [5a], differs 
from (10.4) in the neglect of the S~HS~S2 term. 

There have been numerical studies comparing QCISD with TCC-SD [16], 
which indicate that QCISD is often a valid approximation to TCC-SD, namely 
in those cases where the reference function does not suffer from near degeneracy 
with some other Slater determinants. It remains to be seen whether SCC-SD as 
defined by (10.3) is superior to QCISD. Anyhow the computational costs of 
TCC-SD, SCC-SD and QCISD are not significantly different. Of course, as 
pointed out before, QCISD is one of many simplified coupled-cluster treatments 
and the name 'quadratic CI' may be misleading [23]. 

11. Coupled-cluster methods including single and triple substitutions (CCSDT) 

In this section we choose 

5 =$1+ 5~ + 53 (11.1) 

The functional (4.13) to  be made stationary with respect to variation of S t in 
traditional coupled-cluster theory is then 

1 2 TCC-SDT: E = ( ~  [( I + St~ + S~)H(1 + S~ + $2 + ~S~) 

+ (sT + + + &s2 + 

_}_ (S~2 _Iv s ; ) n ( l s 2  _1_ Sl  S3 _~_ 152 _~_ ~ S 1  ) 1  4 

1 2 l 2 ..[_S~3H(SI_{_S2_~_~SI q_S2S3 1 2 -~ .~S1S3 -~- ~ Sl  S 2 

I 3 l 5 + gSl 5;2 + i~rS~)[~)L ( 1 1.2) 

and as shown earlier, the error is of 0($5). Hence, it does not make much sense 
to consider contributions to (11.2) that are of higher order in S: if we keep only 
terms up to 0($4), then the error will still be 0($5). Noting that 
$1 = O($2), $3 = O(S 2) we get the simplified coupled cluster functional 

SCC-SDT: E = (~  I(1 + S• + S~)H(1 + S~ + $2) +~HS; 2 
1 2 + ( s l  + + + S H(S, S2 +  S2) 

l 2 + St3H(S~ + $2 + ~$2)1~) (11.3) 

Again we can compare with other simplified methods in current use, such as 
the CCSDT-k methods (k = 1,2,3) of Bartlett and coworkers [5g,i,j]. All 
CCSDT-k variants start (implicitly) from the full TCC-SDT functional, but the 
contributions with St3 on the left side m-e replaced by 

( ~  [S~(HoS3 + HS2)I~) in CCSDT-1 (11.4a) 

(q~ tS*3(HoS3 + HS2 + ½HS~)I~ ) in CCSDT-2 (11.4b) 

<~lS*~[no&+nexp(& + $2)]1~> in CCSDT-3 (11.4c) 

where H0 is the one-electron part of H. In view of our analysis these approxima- 
tions are somewhat unbalanced. Nevertheless they have turned out to be quite 
powerful and usually only slightly inferior to full TCC-SDT [5i]. The merit of 
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CCSDT-k is that the computer time scales with N~t" I/7 rather than Ni t  n 8 as in 
full CCSDT (see Sect. 12). 

Other methods correct to O(S 4) are the XCC(4) or UCC(4) approaches by 
Bartlett et al. [25]. Our VCC and UCC truncation at k = 3 which would define 
VCC(4)SDT or VUCC(4)SDT is unbalanced and nor recommended. 

If  we want an error O(S 6) we may use TCC-SDTQ including & (which would 
even imply an error O($7), see Table 1). It is simpler to use ICC(2)SDT, 
ECC(2)SDT, VCC(5)SDT or VUCC(5)SDT. In these schemes one achieves an 
accuracy O(S 6) without the need to include $4. 

The numerator of the ICC(2)SDT functional (5.5b) becomes 

( ) ( 1 2 1 ) 
(~ l  l + S t + ~  S.2 H I + S + ~ S  + . . i ~ S  8 1~) (11,5) 

with S of the form (11.1), At first glance this looks terrible. However, the term 
S 8 on the right only involves S~ and arises for S~ 2 on the left. Such terms are of 
O(S l°) and certainly negligible, The requirement that the error should be of O(S 6) 
eliminates the majority of terms in (11.5) and we get the following extra 
contributions due to the S t2 factors in (t l .5) 

+ & + &  * " + -~S'~) + S~St3HS= 

1 2 S~S~H(S3 ½S2)lcb) (11.6) + ½s 2IZ(& + s3 + & & + + & &  + + + 

It is convenient to represent the overall energy numerator (with a similar 
denominator) in tabular form, as seen in Table 2. One may refer to this approach 
with the error O($6), which is accurate to at least fifth order of perturbation 
theory, as simplified improved coupled-cluster, but we regard the simplification 
as part of  the improvement and simply call it ICC. 

Now we must compare this with VCC(5) or VUCC(5) including $3 (or T3). 
We only take the former (as to the latter see Eq. (7.27)). 

VCC(5)SDT: E = Re(cI, IH + 2HS~ + 2HS2 + HS z + S~HS~ 

+ 2S~HS2 + 2SIllS3 + 2S~H& Sz + S~HS2 + 2St2HS3 

+ S~HS 2 + S~HS~ + +2S~HS, S2 + 2S~HS, $3 

+ S~HS3 + S~HS~ + 2St3HS, $2 + 2St3HS2S3 

+¼S~HS~ + S~2HS, Sz + Stz2HS=S3tCb)L (11.7) 
The terms in (11.7) differ from the numerator of ICC(2)SDT as given in Table 
2 in only two ways: (a) the index L (for linked) in (11.7), and (b) the pressure 
of the term ~S~2HS 3 in ICC but not in VCC. This term is, in fact of O(S ~) 
because ~t2r4 ~ ~'2 **o~,2 vanishes. The existence of this term in I c e  but not in VCC, 
reminds one of the occurrence of the StHS 2 term in TCC-D but not VCC(3) 
(which is identical with CEPA-0). An advantage of (11.7) is that it can be 
minimized directly, while for I c e  we have a functional with a denominator 
whose minimization requires the introduction of Lagrange multipliers, i.e. a 
pseudoeigenvalue problem, 

For an error of O(S 6) we recommend to use a VCC theory based on (11.7) 
or a UCC theory based on the corresponding VUCC(5) expression (7.27). The 
latter leads to a slightly more complicated functional, but the result should be 
more accurate due to the faster convergence of UCC in powers of S. The only 
advantage of  ICC is that like TCC it is exact for a supersystem of non-interacting 
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Table 2. Representation of  the ICC and VCC(5) functionals with S = S~ + $2 + $3 

1 2 1 2 1 3 1 S~ S 2 S 3 y~S 1 ~S 2 S I S z S 1S 3 $2S 3 gS z 

l X X X X 

ST x x x x x 

Stz x x x x x x x x 

S3* x x x x x x 
1 £~f2 
~ o  1 X X 
1 £ , t 2  ~ 2  x x x x x ( x )  

I- t- S~$2 x x x x 

S i S  t x 1 3 

S i S  t x x 2 3 

The left entry refers to operators on the left o f  H in the numerator for ICC, the upper entry to 
operators on the right o f  H, a x means that the respective term is present, e.g. ( ~  ISIHSl  S21qJ). 
The same terms arise in the denominator for ICC, but with H omitted. For  VCC there is no 
denominator and a subscript L has to be added. The term ( x ) is only present in ICC 

two-electron systems, which VCC is not. However, the very fact that one wants 
to include $1 and $3 indicates that one does not deal with such a special 
supersystem (for which S~ = $3 = 0) and the question of  whether this would be 
described accurately is rather irrelevant. To describe such a system better than 
real ones may even lead to some undesired imbalance. The more that one wants 
to push the accuracy the more TCC loses with respect to ICC, VCC or UCC. 

12. Comments on the computational effort 

I f  we consider only double-excitation operators, then a matrix element 
( ~  IX~ VX~ I~ )  is characterized by 6 orbital labels (some of  which may coincide): 
4 labels for either X~ or X~, but they must not differ in more than two labels. 
Generally for Xu and Xv p-particle excitation operators the corresponding matrix 
element has 2p + 2 orbital labels. In iterative CI theory (with Nit the number of  
iterations) one must sum over all labels, which means that for CI-SD the 
term-determining step goes a s  N i t  n6 ,  for CI-SDT as N~tn s and for CI-SDTQ as 
N~tn lo. The same dependence holds for an iterative approach to the solution of  
the coupled-cluster equations. The additional terms in the CC equations that 
involve products of  S operators can be factorized (i.e. one need not sum over all 
labels simultaneously) and have a weaker n-dependence. The matrix elements of 
H0 require one order of  n less (since Xu and X~ must at most differ in one orbital 
label). 

If  one wants to compare the computer t imes for different molecules with 
basis sets of  the same quality, it is the overall n-dependence just described that 
matters, since the numbers nocc of  occupied orbitals and n,~.t of  virtual orbitals 
are essentially proportional. If  one considers a single molecule and keeps nocc 
fixed, but varies the size of  the basis, one should discriminate between the 
dependence on no¢c and nvirt , with nvi, >>nocc. The rate-determining matrix 
elements are then those with p hole labels and p 4- 2 particle labels, i.e. we have 

2 4 3 5 Nitno~nvir, for CI-SDT and N, tno~no~r~ for CI-SDTQ etc. 
In ICC, ECC, VCC or UCC theory the n-dependence is essentially the same 

as in TCC up to the same excitation level, since again the contributions with 
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products of S operators in the matrix elements have a lower n-dependence. This 
means that for TCC-SDT, which is correct to O(~. 4) and in, for example, 
VCC(5)-SDT correct to 0(2 5) the same n-dependence holds, namely Nit" n 8. 
Analogously TCC-SDTQ, correct to 0(2 6) and VCC(7)-SDT correct to 0(2 7) 
require both nit • n'°. 

In TCC theory one is somehow obliged to iterate the CC equations to 
self-consistency, because these equations, (1.3b), represent the stationary condi- 
tions and the simplified energy expression (1.3a) only holds if (1.3b) is solved 
exactly. If  one has not done so and nevertheless uses (1.3a), one makes an error 
(3.13) of the energy that is only linear in the error of S. One is then better off if 
one evaluates the energy from (4.6) or (4.10) because these expressions are 
controlled by the error estimate (4.7) or (4.8) irrespective of whether these 
expressions have been made stationary. On this basis approaches can be justified 
in which one does not satisfy the stationarity condition exactly and nevertheless 
gets reliable results. 

In this philosophy VCC and UCC approaches are the most natural frame. 
Let us, for example, start from VCC(3)SD and determine S, and $2 on this level 
accurately. We then take the VCC(5)SDT functional, insert the formerly deter- 
mined S, and $2 and perform one single iteration for $3. Finally we evaluate E 
from the VCC(5) functional. So one avoids multiplying the rate determining n 8 
step by the factor Nit. However, if one does not satisfy the stationarity condi- 
tions exactly one should not evaluate the energy from an expression which only 
holds when the stationarity condition is satisfied. 

13. Properties 

So-called first order properties like the dipole moment can be defined either as 
expectation values or as derivatives of the energy with respect to some parameter 
(the dipole moment is the gradient of the energy with respect to the strength of 
an external field) while second order properties are defined as second derivatives 
of the energy or first derivatives of expectation values. 

In terms of exact wave functions the alternative definitions are equivalent. 
Let t2 be some operator associated with a property and let 

HA = Ho + 2t2; HA ~e~ = E~ ~ 

then 

(13.1) 

(13.2) 

which is known as Hel lmann-Feynman theorem. From (13.1) it also follows 
that 

(d2E) =Re<~[Ol~"'> (13.3) 

where ~(1) is the solution of 

(H o -- Eo)~ (') = (f2 -- <}P It2[ ~ } ) ~  (13.4a) 

and satisfies the intermediate normalization condition 

<~  [ ~(,)> = 0 (13.4b) 
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Neither (13.2) nor (13.3/4) hold generally for an approximate wave function 
and one gets different results from the alternative definitions, i.e. the left hand 
side or right hand side of (13.2) or (13.3). 

It has been pointed out mainly by Sadlej [41] that the energy derivatives are 
generally preferable to expectation values. On the other hand expectation values 
are more easily calculated and numerically more stable. It is therefore preferable 
to use methods where the two expressions agree. This is not only the case for 
exact wave functions, bu t  also in the framework of 'stationary perturbation 
theory' [42] (for its formulation in the more traditional framework see e.g. [43]). 
The main idea of stationary perturbation theory [42] is to require 

6(~(2)lH+2D[~(2)) = 0  V2, (@(2)I+(2)) = 1 (13.5) 
We describe norm-conserving variations of • as 

,l) -- ,  cI) ' = e X ,l~ ; X =  - X ~ (13.6) 

for a set of operators X that constitute a Lie algebra, which leads to the Brillouin 
condition 

(qi ][H, X] [~)  = 0 (13.7) 

equivalent to the stationarity requirement (13.5). The dependence of q)(2) on 2 is 
formulated as 

• (2) =er(~)~o; Y(2) = ~ 2~Yk (13.8) 
k=0 

where Y(2) is an element of the Lie algebra of operators for which the Brillouin 
theorem (13.7) holds. From (13.5) and (13.8) we easily get 

E =  ~ 2~E~ (13.9a) 
k=0 

E, = (~/i o [D[~o) (13.9b) 

E2 = ½<~0][a, Y,][~o> (13.9c) 

where Y1 is solution of 

<~0l[~, x]  + [[/40, x],  Yl[~0> = 0 (13.10) 

or is equivalently determined by the requirement that YI minimizes the general- 
ized Hylleraas functional 

(~(~01[ ~c~, Y1] -[- l[[n0, Y1], Y 1 ] l ~ 0 ) = 0  (13.11) 

A well-known special case of stationary perturbation theory is coupled Hartree-  
Fock (CHF) where the Lie algebra {X} consists of the antihermitean linear 
combinations of the one particle excitation operators a q = a t q a p .  Not only the 
Hel lman-Feynman theorem (13.9b) holds, but also the equivalence between the 
dipole-length and dipole-velocity formulas for transition matrix e lements-  at 
least in the limit of a complete one-electron basis [42]. 

In view of our error analysis we note that the error of an energy expectation 
value is quadratic in the error of the wave function; hence a first order property 
calculated as the derivative of an energy expectation value has an error quadratic 
in the error of the wave function. This is not the case for a property calculated 
as an expectation value unless the Hel lman-Feynman theorem holds, i.e. in 
stationary perturbation theory. 
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These observations make methods based on stationary conditions for the 
energy preferable for the calculation of properties. Truncated VCC or UCC 
expressions, even CEPA-0, are in this sense nearly as good as genuine expecta- 
tion values. Traditional coupled cluster on the other hand, neither fulfills a 
Hel lman-Feynman theorem, nor provides a convenient way to expectation 
values. H e r e t h e  standard procedure [44] is equivalent to making the TCC 
functional (4.13) in the presence of a perturbation 2V 

E[S t, 2] = (t/i 1[1 + S*(2)]e-S(;-)(H + 2V)eS(~)[~) (13.12) 

stationary with respect to variation of S*(2). Alternatively one may also consider 
as dependent on 2. This would imply that one first performs a coupled 

Hartree-Fock calculation in order to determine ~(2) and then performs a CC 
calculation to include correlation effects. In this case S(2) is determined by 
double excitations as in usual CC, since a 2-dependent Brillouin theorem holds. 
If  one takes • independent of 2, then the necessary change of • appears in the 
S(2) which then has a large proportion of  single excitations. 

The error or properties obtained from (13.12) is of the same kind as the error 
of  the energy i.e. something like (4.7) holds. 

We have stressed several times that due to the Brillouin theorem the 
correlation operator S or T is dominated by double excitations and that the 
influence of single excitations on the energy is small - of similar size to that of 
triple excitations. This is true as far as the energy is concerned, but not for 
properties unless one satisfies a Brillouin theorem for all 2, which one usually 
does not. 

Imagine that we wish to calculate a one-electron property by double pertur- 
bation theory where/-/lo is the operator associated with this property while Hol 
accounts for correlation 

H = Ho + ;tHlo + #Hol (13.13) 

Then as usual the property without correlation is 

El0 = (cb0lnl01~o> (13.14a) 

while the first-order correlation correction is 

EH = Re < ~olHlo[Cbol > = Re( ~olHo, [~o) (13.14b) 

This vanishes if ~o~ = 0 in view of the Brillouin condition at 2 = 0. The 
second-order correlation correction to this property is 

El= = In,01 0, > + Re< oln ot 40= > (13.14c) 
This is not determined by the first-order correlation correction ~01 to the wave 
function alone, but also by the second order one ~02- On the other hand, since 
//1o is a one-electron operator, only the single excitations contained in ~02 
contribute. Although arising first to second order, these are as important as the 
double excitations that already contribute to first order. 

What  one would like to have is a kind of 'coupled coupled-cluster' approach 
where the first 'coupled' is understood in the same sense as coupled Hartree-  
Fock, i.e. one starts from (13.5) with qi(2) a coupled-cluster wave function, and 
applies stationary perturbation theory. In view of the Lie-algebraic structure of 
stationary perturbation theory, the UCC ansatz appears to fit best into this 
scheme. One must, of course, truncate the Hausdorff expansion. Let us truncate 
this after double commutators and let o- (independent of 2) describe the 



380 W. Kutzelnigg 

correlation part. Ho includes the electron interaction and we expand in powers of 
2. One then gets 

l H, E o = <~olHo + [Ho, a] +][ [  o, cr], o']i~o) (13.15a) 

which after making Eo stationary with respect to variation of  tr leads to 

eo = <~olno + ~[no, -]1~o ) (13.15b) 

For E1 we get 

E l = (~ol~Q + [Ho, Y,] ÷ l[[Ho, o'], Yl] + ½[Ho, YI], o-] 

+ If2, a] + l[[f2, crl, cr]]~o> (13.16) 

The Brillouin theorem only removes [Ho, Y,]. A Hel lman-Feynman theorem 
holds if 

1 /_[ <~o][Ho, X] +3[[ o, o], X] + ½[[Ho, X], a l l ' o>  = 0  (13.17) 

which is, in fact, the lowest order Brillouin-Brueckner condition. If  (13.17) is 
satisfied, then (13.16) becomes 

1 f2 E 1 = <~olf2 + [f2, o-1 +~[[ , a], a l l , o )  (13.18) 

which is a (truncated) expectation value with a correlated wave function. Under 
the same condition the second-order expression becomes 

= 1 H, E2 (~o][f2, I1,] +½[[t2, a], Y,] +1[[O, Y1],a] +~[[ o, Y,], Y,]l~o) (13.19) 

which is a kind of Hylleraas functional (13.10), essentially with f2 replaced by 
t~ + [~, ~]. 

It should be mentioned that Bartlett et al. [25] have proposed their hierarchy 
of expectation value coupled duster (XCC) methods mainly for the evaluation of 
properties, and have applied this successfuI}y. One of the motivations of Ar- 
ponen et al. [19] to replace TCC by ECC has also been to get better approxima- 
tions for properties. 

14. Beyond single Slater determinant reference functions 

Throughout this paper we have assumed that the reference wave function is a 
single dosed-shell Slater determinant. Some results are certainly generalizable to 
the open-shell or multiconfiguration reference case, though this generalization is 
usually not trivial. 

The nice property related to dosed-shell reference wave functions is that we 
have only two types of one-particle states (occupied vs unoccupied or particles vs 
holes) such that the various basis excitation operators )irk (from which S or T is 
constructed) commute and the wave operator can easily be formulated in 
intermediate normalization. This property is lost for more general reference 
functions. 

The present state of affairs appears to be that a consistent separable coupled 
cluster theory in the open-shell case is not possible for a single state, but only in 
a valence-universal way which means that a manifold of states have to be taken 
together [45]. This creates new problems related to intruder states. These can be 
avoided if one introduces incomplete model spaces, but this creates new prob- 
lems of a different kind [46]. CEPA-0 type improvements of MC-SCF theory 
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have turned out to be successful [5e, 30] while MBPT2 based on MC-SCF [47] 
appears to be less satisfactory. 

Under these circumstances it appears to be too difficult at the moment to 
apply the present analysis to the open-shell case. However, the author is 
convinced that this will be helpful for finding out what one should really do in 
the open-shell or multiconfiguration case, in order to get a minimal error for a 
tolerable computational effort. 

On the other hand, even for closed-shell states it may not be the most 
economic approach to start from a Har t r ee -Fock  reference function and ,apply 
a coupled-cluster method up to high excitation rank; rather, it may be preferable 
first to perform an MC-SCF calculation and then use a coupled-cluster ansatz 
with low excitation rank. Therefore a careful study of  CC superimposed on 
MC-SCF is badly needed. 

15. Conclusions 

The main messages of this paper are as follows. 

1. The traditional method of moments (of  projected Schr6dinger equations) is 
not necessarily the best way to construct coupled-cluster wave functions. 

2. The traditional approach is equivalent to a stationarity condition for a certain 
functional F(S t) with respect to variation of S t (not with respect to S t and S 
as in variational theories). Other functionals to be made stationary can be 
defined. These correspond to improved CC (ICC), extended CC (ECC), varia- 
tional CC (VCC) or unitary CC (UCC), truncated at various orders in powers 
of  S (or T). 

3. The derivation of  TCC and the other CC variants from stationarity condi- 
tions on energy functionals gives additional insight and has other advantages. 
Such a functional is, for example, a valid approximation to the energy of a state 
even if it is only approximately stationary. Functionals symmetric in S and S t 
are superior to asymmetric ones, because then stationarity with respect to 
variation of  S t implies stationarity with respect to variation of  S and vice versa. 

4. The error of the energy in any of  these CC approaches depends sensitively on 
the functional chosen. All error estimates depend on the error 6 of  S, and on S 
itself. The ideal error estimate 0(32) holds for (untruncated) variational or 
unitary coupled cluster. In VCC or UCC (truncated at kth order in S (or T) 
there is an additional error term 0(S~+1). Traditional coupled cluster has an 
error of  the form 0(6)f(6, S), i.e. the error vanishes if 6 = 0. 

5. TCC is much better than one might have guessed and on the level where one 
includes single and double excitations (TCC-SD) it is hard to beat. The other CC 
schemes win if one wants to push the theory to high performance. For  an 
accuracy beyond that of TCC-SDT it is more economic to switch to ICC(2)- 
SDT or VCC(5)-SDT rather than to go to TCC-SDTQ. 

6. In TCC there is only a hierarchy based on the excitation rank, i.e. on whether 
one includes $2, $2 + $1 + $3 etc. In VCC or UCC there is a second hierarchy 
based on the truncation order. However, it is straightforward to combine the 
hierarchies in a consistent way. Truncated VCC or UCC can be improved by 
summing certain terms in a CPF-type way to infinite orders. 
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7. For  properties it is very important to start from the energy functionals that 
are stationary in the presence of the perturbation. Single excitations become 
much more important than for the energy. 

8. In CC methods, especially those where one does not have to rely on satisfying 
a stationarity condition exactly, simplifications are often possible which consist 
in neglecting contributions that are of  higher order than the overall accuracy 
of the scheme. In a method correct to O(S 3) it will usually not pay to include 
terms of say 0($5). However, this argument can become dangerous in some 
cases. If  one ignores all terms beyond some 0(2 ~) one arrives at strict perturba- 
tion theory, which one wants to avoid since the superiority of CC over PT 
consists in summing certain classes of diagrams to infinite order. Also, according 
to the error analysis CEPA-0 and CC-SD are of the same order, but CC-SD is 
often much better, especially in cases of near degeneracy where S is particularly 
large. 

We close with a general remark. Whenever one introduces a new approxi- 
mate quantum chemical-ab-initio method or promotes an old one, it is customary 
first to give a list of  qualities that a good approximative scheme should have and 
then to point out that the method to be promoted has the more important ones 
of the desired qualities. A typical list is that of Pople et al. [23a]. In the light of 
the present analysis there are - as far as the energy is concerned - actually only 
two qualities required. For  a given computational effort that one can afford it 
should (a) have the smallest possible error, and (b) the error should be consistent 
for isomers of  one molecule, for a displacement along the reaction coordinate, or 
for different systems that one wants to compare. The consistency of the error is 
dependent on the computational algorithm chosen, but depends even more on 
the basis set - a point which is not always fully appreciated [48, 49]. The error 
of the energy is small if it goes quadratically with the error of the wave function 
and if it scales linearly with the number of particles. Either quality by itself is less 
important than a good ~compromise between the two. 

In the introduction to this paper we have pointed out that one should not 
overestimate the importance of the variation principle. Now we must add that 
one should not overestimate the importance of extensivity either, i.e. of  the 
correct scaling with the particle number. Consistency along one potential surface 
is often more important than consistency between two calculations for different 
electron numbers. A dimerisation energy can always be obtained from a calcula- 
tion of the dimer at its equilibrium distance and at a very large distance. 

Exactness for the special case of non-interacting pairs is also much less 
important than is often claimed. It has even been found that this property leads 
to a bias in the description of  interacting electron pairs [16] (like Ben clusters). 
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Appendix A 

On the justification of the denominator (8.9) 

We give here a plausibility argument rather than a rigorous proof  for the 
approximate unitary invariance of the denominator (8.9). We first assume that 
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all localized pairs S~ are equivalent to each other in the sense that they have the 
2 same ~, and s, 

(,~IHsI,P>= ~ <¢]g'&[~>=nE, (A.la)  
u=l 

Z (A.lb)  
/1=1 

For E (3) as given by (8.4) we get 

E °) = 2 Z '  ( ~  IS'H"SuSv 1~ > - 2 ~, ( ~  [S~S,H ~& [~ } 
tz,v It,v 

= 2n(n - 1)s%~ - 2n2s2% = - 2 n s 2 %  

2 
= - -  Is*sl ><  IHS[~> (A.2) 

n 

We now assume that there is a transformation to delocalized orbitals such that 
all spin-orbital pairs are equivalent in the sense 

2n 
<~IHSI¢> = Z ( ~ [ ~ ' J S , j [ ¢ } = n ( 2 n - - 1 ) E , j  (A.3a) 

i < j =  l 

2n 

(¢/ilS*SIq~}= Z ( ° b l S i J S i J l ~ } = n ( Z n - 1 )  s2 (a .3b)  
i < j =  1 

Then in view of (A.2), we get for E (3) 

E (3) - - - - -  - 2 n ( 2 n  - 1)2s2.Eij (A.4) 

The second term in (8.6) yields 

-- ~ '  (q~ IS'JSijg'JSij[~ } = -- 2n(2n - -  1)s2,ij (m.5a) 
i,j 

and the third term in (8.6) 

- ~'<~lS%(gk'&, +g~J&j)l~> = -4n(Zn  - 1)(2n - 2)s}%. (A.5b) 
i,j,k 

One easily sees that (A.5a) plus half of (A.5b) yields (A.4). It is rather tedious 
to see directly that in this case the first term in (8.6) just cancels one half of the 
third term. 

Appendix B 

We apply the philosophy behind ACC to the E (3) as given by (7.7). We ignore 
labels and take the fully linked expression. Then we get 4 types of  contributions 
to (~b [S*HSZ[ ~ ) ,  namely 

,,b-cd jt it l-~d ik~t ab jl ~ (B.1) 
- -  Cij g k l  Cab Cod = - -  ~ g k l  CcdlkCij  Cab) 

a b - c d  ij kl ~ (B.2) 
- - C i j  g k l C a c C b d  

+ ab-~u it u (B.3) Cij g k l  CaeCbd 

.~_ a b - c d  i j  kl I ' - cd  i j ' ~ [  ab kl'~ (B.4) 
Cij g k l C e d C a b  ~ ~gk lCcd l~Ci j  Cab] 
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For a 2-electron system (B.2) and (B.3) cancel, and there are reasons to assume 
that (B.2) and (B.3) are usually small. The EPV-contribu~i~ns to (B.1) and (B.4) 
yield exactly the contributions to (8.6) which factorize. In keeping (B.1) and 
(B.4) one takes care of these contributions, but one has additional ones that 
guarantee unitary invariance. In some sense (B.1) and (B.4) factorize as well, 
namely as indicated (one can sum over particle indices in each factor in 
parentheses) but not in the simple form that allows for a summation of  a 
geometrical series as is needed for the construction of a CPF theory. 
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